Nonstop flight route between Poteau, Oklahoma, United States and Port Alexander, Alaska, United States:
Departure Airport:
Arrival Airport:
Distance from RKR to PTD:
Share this route:
Jump to:
- About this route
- RKR Airport Information
- PTD Airport Information
- Facts about RKR
- Facts about PTD
- Map of Nearest Airports to RKR
- List of Nearest Airports to RKR
- Map of Furthest Airports from RKR
- List of Furthest Airports from RKR
- Map of Nearest Airports to PTD
- List of Nearest Airports to PTD
- Map of Furthest Airports from PTD
- List of Furthest Airports from PTD
About this route:
A direct, nonstop flight between Robert S. Kerr Airport (RKR), Poteau, Oklahoma, United States and Port Alexander Seaplane Base (PTD), Port Alexander, Alaska, United States would travel a Great Circle distance of 2,374 miles (or 3,820 kilometers).
A Great Circle is the shortest distance between 2 points on a sphere. Because most world maps are flat (but the Earth is round), the route of the shortest distance between 2 points on the Earth will often appear curved when viewed on a flat map, especially for long distances. If you were to simply draw a straight line on a flat map and measure a very long distance, it would likely be much further than if you were to lay a string between those two points on a globe. Because of the relatively short distance between Robert S. Kerr Airport and Port Alexander Seaplane Base, the route shown on this map most likely still appears to be a straight line.
Departure Airport Information:
| IATA / ICAO Codes: | RKR / KRKR |
| Airport Name: | Robert S. Kerr Airport |
| Location: | Poteau, Oklahoma, United States |
| GPS Coordinates: | 35°1'18"N by 94°37'15"W |
| Area Served: | Poteau, Oklahoma |
| Operator/Owner: | City of Poteau |
| Airport Type: | Public |
| Elevation: | 450 feet (137 meters) |
| # of Runways: | 1 |
| View all routes: | Routes from RKR |
| More Information: | RKR Maps & Info |
Arrival Airport Information:
| IATA / ICAO Codes: | PTD / PAAP |
| Airport Names: |
|
| Location: | Port Alexander, Alaska, United States |
| GPS Coordinates: | 56°14'48"N by 134°38'53"W |
| Area Served: | Port Alexander, Alaska |
| Operator/Owner: | Alaska DOT&PF - Southeast Region |
| Airport Type: | Public |
| Elevation: | 0 feet (0 meters) |
| # of Runways: | 1 |
| View all routes: | Routes from PTD |
| More Information: | PTD Maps & Info |
Facts about Robert S. Kerr Airport (RKR):
- Because of Robert S. Kerr Airport's relatively low elevation of 450 feet, planes can take off or land at Robert S. Kerr Airport at a lower air speed than at airports located at a higher elevation. This is because the air density is higher closer to sea level than it would otherwise be at higher elevations.
- The furthest airport from Robert S. Kerr Airport (RKR) is Margaret River Airport (MGV), which is located 10,749 miles (17,298 kilometers) away in Margaret River, Western Australia, Australia.
- Robert S. Kerr Airport (RKR) currently has only 1 runway.
- The closest airport to Robert S. Kerr Airport (RKR) is Fort Smith Regional Airport (FSM), which is located 26 miles (42 kilometers) NNE of RKR.
Facts about Port Alexander Seaplane Base (PTD):
- The furthest airport from Port Alexander Seaplane Base (PTD) is Port Alfred Airport (AFD), which is located 10,640 miles (17,123 kilometers) away in Port Alfred, South Africa.
- In addition to being known as "Port Alexander Seaplane Base", another name for PTD is "AHP".
- Port Alexander Seaplane Base has one seaplane landing area designated N/S which measures 3,000 by 300 feet.
- Port Alexander Seaplane Base (PTD) currently has only 1 runway.
- The closest airport to Port Alexander Seaplane Base (PTD) is Point Baker Seaplane Base (KPB), which is located 40 miles (64 kilometers) E of PTD.
- Because of Port Alexander Seaplane Base's relatively low elevation of 0 feet, planes can take off or land at Port Alexander Seaplane Base at a lower air speed than at airports located at a higher elevation. This is because the air density is higher closer to sea level than it would otherwise be at higher elevations.
