Nonstop flight route between Franca, São Paulo, Brazil and Coober Pedy, South Australia, Australia:
Departure Airport:

Arrival Airport:

Distance from FRC to CPD:
Share this route:
Jump to:
- About this route
- FRC Airport Information
- CPD Airport Information
- Facts about FRC
- Facts about CPD
- Map of Nearest Airports to FRC
- List of Nearest Airports to FRC
- Map of Furthest Airports from FRC
- List of Furthest Airports from FRC
- Map of Nearest Airports to CPD
- List of Nearest Airports to CPD
- Map of Furthest Airports from CPD
- List of Furthest Airports from CPD
About this route:
A direct, nonstop flight between Ten. Lund Presetto State Airport (FRC), Franca, São Paulo, Brazil and Coober Pedy Airport (CPD), Coober Pedy, South Australia, Australia would travel a Great Circle distance of 9,005 miles (or 14,492 kilometers).
A Great Circle is the shortest distance between 2 points on a sphere. Because most world maps are flat (but the Earth is round), the route of the shortest distance between 2 points on the Earth will often appear curved when viewed on a flat map, especially for long distances. If you were to simply draw a straight line on a flat map and measure a very long distance, it would likely be much further than if you were to lay a string between those two points on a globe. Because of the large distance between Ten. Lund Presetto State Airport and Coober Pedy Airport, the route shown on this map most likely appears curved because of this reason.
Try it at home! Get a globe and tightly lay a string between Ten. Lund Presetto State Airport and Coober Pedy Airport. You'll see that it will travel the same route of the red line on this map!
Departure Airport Information:
IATA / ICAO Codes: | FRC / SIMK |
Airport Names: |
|
Location: | Franca, São Paulo, Brazil |
GPS Coordinates: | 20°35'25"S by 47°22'57"W |
Area Served: | Franca |
Operator/Owner: | DAESP |
Airport Type: | Public |
Elevation: | 3291 feet (1,003 meters) |
# of Runways: | 1 |
View all routes: | Routes from FRC |
More Information: | FRC Maps & Info |
Arrival Airport Information:
IATA / ICAO Codes: | CPD / YCBP |
Airport Name: | Coober Pedy Airport |
Location: | Coober Pedy, South Australia, Australia |
GPS Coordinates: | 29°2'23"S by 134°43'18"E |
Operator/Owner: | District Council of Coober Pedy |
Airport Type: | Public |
Elevation: | 740 feet (226 meters) |
# of Runways: | 2 |
View all routes: | Routes from CPD |
More Information: | CPD Maps & Info |
Facts about Ten. Lund Presetto State Airport (FRC):
- In addition to being known as "Ten. Lund Presetto State Airport", another name for FRC is "Aeroporto Estadual Ten. Lund Presetto".
- The furthest airport from Ten. Lund Presetto State Airport (FRC) is Minami-Daito Airport (MMD), which is nearly antipodal to Ten. Lund Presetto State Airport (meaning Ten. Lund Presetto State Airport is almost on the exact opposite side of the Earth from Minami-Daito Airport), and is located 12,064 miles (19,414 kilometers) away in Minami Daito, Okinawa, Japan.
- Ten. Lund Presetto State Airport (FRC) currently has only 1 runway.
- The closest airport to Ten. Lund Presetto State Airport (FRC) is Dr. Leite Lopes State Airport (RAO), which is located 46 miles (73 kilometers) SW of FRC.
- The airport is located 7 km from downtown Franca.
- Tenente Lund Presetto State Airport is the airport serving Franca, Brazil.
- Ten. Lund Presetto State Airport handled 2,105 passengers last year.
Facts about Coober Pedy Airport (CPD):
- Coober Pedy Airport (CPD) has 2 runways.
- The closest airport to Coober Pedy Airport (CPD) is Andamooka Airport (ADO), which is located 174 miles (280 kilometers) SE of CPD.
- The furthest airport from Coober Pedy Airport (CPD) is Flores Airport (FLW), which is located 11,357 miles (18,278 kilometers) away in Flores Island, Azores, Portugal.
- Because of Coober Pedy Airport's relatively low elevation of 740 feet, planes can take off or land at Coober Pedy Airport at a lower air speed than at airports located at a higher elevation. This is because the air density is higher closer to sea level than it would otherwise be at higher elevations.