Nonstop flight route between Lankaran, Azerbaijan and Madera, California, United States:
Departure Airport:

Arrival Airport:

Distance from LLK to MAE:
Share this route:
Jump to:
- About this route
- LLK Airport Information
- MAE Airport Information
- Facts about LLK
- Facts about MAE
- Map of Nearest Airports to LLK
- List of Nearest Airports to LLK
- Map of Furthest Airports from LLK
- List of Furthest Airports from LLK
- Map of Nearest Airports to MAE
- List of Nearest Airports to MAE
- Map of Furthest Airports from MAE
- List of Furthest Airports from MAE
About this route:
A direct, nonstop flight between Lankaran International Airport (LLK), Lankaran, Azerbaijan and Madera Municipal Airport (MAE), Madera, California, United States would travel a Great Circle distance of 7,156 miles (or 11,516 kilometers).
A Great Circle is the shortest distance between 2 points on a sphere. Because most world maps are flat (but the Earth is round), the route of the shortest distance between 2 points on the Earth will often appear curved when viewed on a flat map, especially for long distances. If you were to simply draw a straight line on a flat map and measure a very long distance, it would likely be much further than if you were to lay a string between those two points on a globe. Because of the large distance between Lankaran International Airport and Madera Municipal Airport, the route shown on this map most likely appears curved because of this reason.
Try it at home! Get a globe and tightly lay a string between Lankaran International Airport and Madera Municipal Airport. You'll see that it will travel the same route of the red line on this map!
Departure Airport Information:
IATA / ICAO Codes: | LLK / UBBL |
Airport Names: |
|
Location: | Lankaran, Azerbaijan |
GPS Coordinates: | 38°45'30"N by 48°48'23"E |
Area Served: | Lankaran, Azerbaijan |
Operator/Owner: | Government |
Airport Type: | Public |
Elevation: | 30 feet (9 meters) |
# of Runways: | 1 |
View all routes: | Routes from LLK |
More Information: | LLK Maps & Info |
Arrival Airport Information:
IATA / ICAO Codes: | MAE / KMAE |
Airport Name: | Madera Municipal Airport |
Location: | Madera, California, United States |
GPS Coordinates: | 36°59'18"N by 120°6'44"W |
Area Served: | Madera, California |
Operator/Owner: | City of Madera |
Airport Type: | Public |
Elevation: | 255 feet (78 meters) |
# of Runways: | 2 |
View all routes: | Routes from MAE |
More Information: | MAE Maps & Info |
Facts about Lankaran International Airport (LLK):
- In addition to being known as "Lankaran International Airport", another name for LLK is "Lənkəran Hava Limanı".
- Lankaran International Airport (LLK) currently has only 1 runway.
- The closest airport to Lankaran International Airport (LLK) is Ardabil Airport (ADU), which is located 36 miles (59 kilometers) SW of LLK.
- The furthest airport from Lankaran International Airport (LLK) is Totegegie Airport (GMR), which is located 11,332 miles (18,237 kilometers) away in Mangareva, Gambier Islands, French Polynesia.
- Because of Lankaran International Airport's relatively low elevation of 30 feet, planes can take off or land at Lankaran International Airport at a lower air speed than at airports located at a higher elevation. This is because the air density is higher closer to sea level than it would otherwise be at higher elevations.
Facts about Madera Municipal Airport (MAE):
- Madera Municipal Airport (MAE) has 2 runways.
- The closest airport to Madera Municipal Airport (MAE) is Fresno Chandler Executive AirportChandler Municipal Airport (Old) (FCH), which is located 24 miles (39 kilometers) SE of MAE.
- The furthest airport from Madera Municipal Airport (MAE) is Pierrefonds Airport (ZSE), which is located 11,322 miles (18,221 kilometers) away in Saint-Pierre, Réunion.
- Because of Madera Municipal Airport's relatively low elevation of 255 feet, planes can take off or land at Madera Municipal Airport at a lower air speed than at airports located at a higher elevation. This is because the air density is higher closer to sea level than it would otherwise be at higher elevations.